Вконтакте Facebook Twitter Лента RSS

Понятие о вибрации параметры характеризующие вибрацию нормирование. Физические и нормативные параметры вибраций. Нормы общей вибрации

Вибрационная безопасность персонала производственной и социально-бытовой сферы деятельности

Учебно-методическое пособие для практических занятий по БЖД студентов АлтГТУ всех форм обучения

Барнаул 2011

Стуров Д. С., Гергерт В.Р., Калин А.Ю. Вибрационная безопасность персонала производственной и социально-бытовой сферы деятельности: Учебно-методическое пособие для практических занятий по БЖД/ Алт. гос. техн. уни-т им. И.И. Ползунова – Барнаул, изд-во АГТУ, 2011

Учебно-методическое пособие для практических занятий по БЖД рассмотрено методической комиссией кафедры БЖД и одобрено для использования.

Общие теоретические сведения о вибрации.

В основу разработки учебно-методического пособия положены государственные нормативно-правовые документы:

· ГОСТ 12.1.012-90. ССБТ, Вибрационная безопасность.

· СН 2.2. 4/2. 1.8.566-96, Санитарные нормы. Производственная вибрация, вибрация в помещениях жилых и общественных зданий.

Термины и определения, источники и причины вибрации.

Вибрация – это механические колебания упругих тел и материалов, отдельных частей машин, механизмов, фундаментов, строительных конструкций и т.п., при воздействии на них знакопеременной возмущающей силы.

С физической точки зрения между шумом (т.е. звуковыми колебаниями) и вибрацией принципиальной разницы нет. Разница имеет место лишь в восприятии колебаний: вибрация воспринимается вестибулярным аппаратом и органами осязания, а шум – органом слуха. Механические колебания упругих тел с частотой до 20 Гц воспринимаются организмом как вибрация, фактически это инфразвук, т.е. неслышимые колебания, а колебания с частотой более 20 Гц – воспринимаются одновременно и как вибрация и как звук. Примером этому может служить струна музыкального инструмента – она колеблется и звучит.

Источниками вибрации являются: различные технологические процессы (рубка металла, механическая обработка, размол и измельчение продукта и т.д.); машины, механизмы и их рабочие органы; ручные механизированные инструменты (электродрели, пневмонаждаки и т.п.); органы ручного управления машинами и оборудованием, и т.д.

Причины возникновения вибрации во многом обусловлены техническим прогрессом, характеризующимся увеличением скоростей движения, возрастанием мощностей, усилий, производительности оборудования. Но современная техносфера не совершенна: имеют место неуравновешенность и неравномерность движения механизмов, неточность изготовления, увеличенные зазоры в шарнирных сочленениях, неоднородность материалов движущихся деталей машин и механизмов и т.п. Всё это вместе или по отдельности является источником возникновения возмущающих знакопеременных сил, порождающих вибрацию.

Основные параметры и характеристики вибрации.

Техногенные вибрации могут быть простые, когда колебания совершаются по одной из трёх координат (X,Y,Z) и сложные, когда колебания объекта происходят одновременно по всем координатным направлениям с разной амплитудой и частотой.

Простейшим видом колебаний являются гармонические синусоидальные колебания по одной из трёх осей координат (рисунок 1).

Рисунок 1. Гармонические синусоидальные колебания точки m:

Колебательное смещение (виброперемещение)

Колебательная скорость (виброскорость)

Колебательное ускорение (виброускорение)

Основными параметрами характеризующими вибрацию являются:

Амплитуда смещения колеблющейся точки m от положения равновесия.

Формула движения точки m:

, м (1)

где - максимальное смещение точки от положения равновесия (от оси рис.1)

Круговая частота,

Частота колебаний, Гц.

- 1 Герц (Гц) равен числу периодов колебаний в 1 секунду.

. Если, например, период одного колебания равен 1 с, то

частота Гц

Если число периодов колебаний в 1 секунду будет равно 10 , то время одного периода колебаний равно 0,1 с, и тогда Гц.

Максимальное значение амплитуды вибросмещеня по формуле (1) будет равно

Скорость колебаний (виброскорость) точки ,

Максимальное значение виброскорости (амплитуда виброскорости) , м/с

Виброускорение точки ,

Максимальное значение виброускорения по формуле (3) равно

, м/с

В общем случае физические величины, характеризующие вибрацию (например, виброскорости), являются некоторой функцией времени, т.е. . В таких случаях, по математической теории, колебательный процесс представляется в виде суммы бесконечно длящихся синусоидальных колебаний с различными частотами и амплитудами. Это называют полигармоническим колебательным процессом. При этом процесс может быть периодическим или квазипериодическим, частотные спектры которых считаются дискретными. (рис.2а)

Если же колебательный процесс является случайным или одиночным кратковременным – спектр вибрационных параметров считается непрерывным (рис.2б).

В реальных условиях наиболее часто вибрация представляется в виде периодических полигармонических колебаний. Тогда в силу специфических свойств органов чувств человека определяющими, т.е. действующими на организм человека, являются не максимальные значения параметров вибрации (амплитуды, скорости и ускорения), а среднеквадратичные их значения (это примерно 0,67…0,75 от их максимума). Более точное определение среднеквадратичных значений виброскорости и виброускорения выполняется по формулам:

; (4)

где - число составляющих гармоник в спектре

- значения колебательной скорости и ускорения.

В практике виброизмерений абсолютные значения параметров вибрации изменяются в очень широких пределах. Например, амплитуда колебаний при морской качке доходит до 10 метров, а амплитуда колебаний на корпусе домашней электробритвы всего лишь 0,01 мм. Точно также в широких пределах изменяются скорость и ускорение. Отличие максимального значения параметров от минимально ощутимого (порогового) значения достигает , т.е. в один миллион раз максимум параметра больше его минимума. Это создаёт большие неудобства в практических расчётах и исследованиях. В целях резкого сокращения измерительных шкал, для удобства пользования, применяют логарифмические шкалы величины параметров вибрации, получившие название – уровни виброскорости , дБ и уровни виброускорений , дБ (децибел):

·
, дБ (5)

·
, дБ (6)

где - пороговое (минимально ощутимое организмом человека) значение виброскорости;

а о =1·10 -6 м/с 2 =1·10 -4 см/с 2 =1·10 -3 мм/с 2 - пороговое (минимально ощутимое организмом человека) значение виброускорения;

б) 0
a) 0
f=2 Гц
f=4 Гц
f=6 Гц
f=8 Гц
f=10 Гц
f, Гц
L V
A V
t, c
f, Гц
A V
L V
t, c

Рисунок 2: Полигармонические спектры производственной вибрации.

Причиной возникновения вибраций являются возникающие при работе машин и агрегатов неуравновешенные силовые воздействия. В одних случаях их источниками являются возвратно-поступательно движущиеся детали (кривошипно-шатунный механизм в двигателях и компрессорах, боек в ручных перфораторах, вибрационные механизмы для уплотнения бетонных и асфальто-бетонных смесей, вибротрамбовки, агрегаты виброформования в литейных цехах, агрегаты для проковки сварных соединений и т. п.); в других случаях неуравновешенные вращающиеся массы (ручные электрические и пневматические шлифовальные машины, режущий инструмент станков и т. п.). Иногда вибрации создаются ударами деталей (зубчатые зацепления коробки передач, подшипниковые узлы, соединительные муфты и т. п.).

Наличие дисбаланса во всех случаях приводит к появлению неуравновешенных центробежных сил, вызывающих вибрацию. Причиной дисбаланса может явиться неоднородность материала вращающегося тела, несовпадение центра массы тела и оси вращения, деформация деталей от неравномерного нагрева при горячих и холодных посадках и т. п.

Основными параметрами, характеризующими вибрацию, происходящую по синусоидальному закону, являются: амплитуда смещения хт — величина наибольшего отклонения колеблющейся точки от положения равновесия; амплитуда колебательной скорости vm — максимальное из значений скорости колеблющейся точки; амплитуда колебательного ускорения ат — максимальное из значений ускорения колеблющейся точки; период колебаний Т — промежуток врехмени между двумя последовательными одинаковыми состояниями системы; частота f в герцах, связанная с периодом известным соотношением f = 1/T.

Смещение в случае синусоидальных колебаний определяется формулой x=xm sin (wt + φ), где w — круговая частота (w = 2πf); φ — начальная фаза. В большинстве задач охраны труда начальная фаза значения не имеет и может не учитываться.

Соотношение между смещением, скоростью и ускорением задается следующими выражениями: v = х = jwx; а = х = v = —w2х, где j=√-1 оператор поворота вектора колебаний на угол π/2 во времени.

В общем случае физическая величина, характеризующая вибрацию (например, колебательная скорость), является некоторой функцией времени: v = v (t). Математическая теория показывает, что такой процесс можно представить в виде суммы бесконечно долго длящихся синусоидальных колебаний с различными периодами и амплитудами. В случае периодического процесса частоты этих составляющих кратны основной частоте процесса: fn = nf1, где п = 1, 2, 3, ..., f1 — основная частота процесса, а амплитуды гармоник определяются по известным формулам разложения в ряд Фурье. Если же процесс не имеет определенного периода (случайные или кратковременные одиночные процессы), то число таких синусоидальных составляющих становится бесконечно большим, а их частоты распределены непрерывным образом, при этом амплитуды определяются разложением по формуле интеграла Фурье.

Таким образом, спектр периодического или квазипериодического колебательного процесса является дискретным (рис. 27а), а случайного или кратковременного одиночного процесса — сплошным (рис. 27, б). Чаще всего в дискретном спектре наиболее ярко выражена основная частота колебаний, обусловленная работой привода. Если процесс представляет собой сложение нескольких периодических процессов, частоты отдельных составляющих в его спектре могут быть не кратными друг другу, т. е. имеет место квазипериодический процесс (рис. 27, а). Если же процесс представляет собой сумму нескольких периодических и случайных процессов, спектр его является смешанным, т. е. изображается в виде сплошного и дискретного спектров, наложенных друг на друга (рис. 27, в).

Рис. 27. Спектры вибрации: а — дискретный; б — сплошной; в — смешанный

В вопросах охраны труда в силу специфических свойств органов чувств определяющими являются действующие значения параметров, характеризующих вибрацию. Так, действующее значение колебательной скорости есть среднее квадратичное мгновенных значений скорости за время усреднения

Таким образом, для характеристики вибрации используют спектры действующих значений параметров или средних квадратов последних. При оценке суммарного воздействия колебаний различных частот или отдельных источников на человека следует иметь в виду, что при сложении некогерентных колебаний результирующую колебательную скорость (ускорение, смещение) находят энергетическим суммированием мощностей отдельных составляющих спектра (или отдельных источников) или, что одно и то же, суммированием средних квадратов , где n — число составляющих в спектре.

В соответствии с этим результирующее действующее значение процесса определяется выражением

Изображение сплошного спектра требует обязательной оговорки о ширине Δf элементарных частотных полос, к которым относится изображение. Если f1 — нижняя граничная частота данной полосы частот, f2 — верхняя граничная частота, то в качестве частоты, характеризующей полосу в целом, берется среднегеометрическая

частота fсг=√f1f2

В практике виброакустических исследований весь диапазон частот вибрации разбивается на октавные диапазоны. В октавном диапазоне верхняя граничная частота вдвое больше нижней f2/f2 = 2.

Анализ вибрации может производиться также в третьоктавных полосах частот. В третьоктаве .

Среднегеометрические частоты октавных полос частот вибраций стандартизированы и составляют: 1, 2, 4, 8, 16, 32, 63, 125, 250, 500, 1000, 2000 Гц.

Учитывая, что абсолютные значения параметров, характеризующих вибрацию, изменяются в очень широких пределах, в практике виброакустических исследований используют понятие уровня параметров.

Уровень параметра есть логарифмическое отношение абсолютной величины параметра к некоторому его значению, выбранному в качестве начала отсчета (опорное или пороговое значение). Измеряются уровни в децибелах (дБ).

Уровень колебательной скорости (дБ)

где средний квадрат колебательной скорости v2 берется в соответствующей полосе частот; v0 — опорное или пороговое значение колебательной скорости (м/с), выбранное международным соглашением:

v0 = 5*10-8.

При сравнении двух колебательных процессов, характеризующихся уровнями виброскорости Lv1 и Lv2 (дБ), соответственно имеем для разности этих уравнений выражение

Спектры уровней колебательной скорости являются основными характеристиками вибрации.

Различают общую и локальную (местную) вибрации. Общая вибрация вызывает сотрясения всего организма, местная вовлекает в колеторых других видов оборудования. Локальной вибрации подвергаются работающие с ручным механизированным электрическим и пневматическим инструментом (зачистка сварочных швов, обрубка литья, клепка, шлифовка и т. п.). В ряде случаев работающий может подвергаться одновременно воздействию общей и локальной вибрации (комбинированная вибрация), например, при работе на строительно-дорожных машинах и транспорте.

Общие вибрации с частотой менее 0,7 Гц (качка) хотя и неприятны, но не приводят к вибрационной болезни. Тело человека и его отдельные внутренние органы движутся в этом случае как единое целое, не испытывая взаимных перемещений. Следствием такой вибрации является морская болезнь, происходящая из-за нарушения нормальной деятельности органов равновесия.

Различные внутренние органы и отдельные части тела (например, голову или сердце) можно рассматривать как колебательные системы с определенной сосредоточенной массой, соединенные между собой «пружинами» с определенными упругими свойствами и включением параллельных сопротивлений. Очевидно, что такая система обладает рядом резонансов, частоты которых (субъективное восприятие вибраций) зависят также от положения тела работающего («стоя», или «сидя»).

Резонанс на частотах 4—6 Гц соответствует колебаниям плечевого пояса, бедер (в положении «стоя»), головы относительно основания (положение «стоя»); на частотах 25—30 Гц — головы относительно плеч (положение «сидя»). Для большинства внутренних органов собственные частоты лежат в диапазоне 6—9 Гц. Колебания рабочих мест с указанными частотами весьма опасны, так как могут вызвать механические повреждения и даже разрыв этих органов. Систематическое воздействие общих вибраций в резонансной или околорезонансной зоне может быть причиной вибрационной болезни — стойких нарушений физиологических функций организма, обусловленных преимущественно воздействием вибраций на центральную нервную систему. Эти нарушения проявляются в виде головных болей, головокружений, плохого сна, пониженной работоспособности, плохого самочувствия, нарушений сердечной деятельности.

Локальная вибрация вызывает спазмы сосудов, которые, начинаясь с концевых фаланг пальцев, распространяются на всю кисть, предплечье и охватывают сосуды сердца. Вследствие этого происходит нарушение периферического кровоснабжения — ухудшение снабжения конечностей кровью. Одновременно наблюдается воздействие вибрации на нервные окончания, мышечные и костные ткани, выражающееся в нарушении чувствительности кожи, окостенении сухожилий мышц, болях и отложениях солей в суставах кистей рук и пальцев, что приводит к деформациям и уменьшению подвижности суставов. Все указанные изменения усиливаются в холодный и уменьшаются в теплый период года. Одновременно наблюдаются нарушения деятельности центральной нервной системы, как при общей вибрации.

Виброболезнь относится к группе профзаболеваний, эффективное лечение которых возможно лишь на ранних стадиях, причем восстановление нарушенных функций протекает очень медленно, а в особо тяжелых случаях в организме наступают необратимые изменения, приводящие к инвалидности.

Полезная информация:

Вибрация колебательные движения материальной точки или механической системы. Причиной возбуждения вибрации являются возникающие при работе машин и агрегатов неуравновешенные силовые воздействия, кинематическое возбуждение при движении транспортных средств по неровному пути и т.д.

Основными физическими параметрами вибрации являются:

Частота f 0 , Гц;

Период колебаний Т, с;

Амплитуда виброперемещения А, м;

Амплитуда колебательной скорости V, м/с;

Амплитуда колебательного ускорения W, м/с 2 .

Эти параметры находятся в следующей зависимости:

Базовая частота предельного спектра для общей вибрации равна 63 Гц, для локальной- 125 Гц

Гигиеническими характеристиками вибрации, определяющими её воздействие на человека, являются среднеквадратичные значения виброскорости и её логарифмические уровни. Вибрация оценивается логарифмическим уравнением виброскорости в децибелах.

Логарифмический уровень виброскорости определяют по выражению: (3)

где: V 0 – пороговое значение виброскорости, равное 5 10 –8 м/с.

Пороговое значение виброскорости – это то значение виброскорости, при котором человек едва начинает ощущать действие вибрации.

Логарифмический уровень виброускорения вычисляют по формуле: , дБ (4)

где W o – пороговое значение виброускорения, W o =3 10 –4 , м/с 2 .

Классификация вибраций

По_способу передачи-на человека вибрации подразделяют на общую, передающуюся через опорные поверхности на тело сидящего или стоящего человека, и локальную, передающуюся через руки человека.

По направлению действия вибрация бывает - действующей вдоль осей ортогональной системы координат X, У, Z - для общей вибра­ции, где Z - вертикальная ось, а А" и У- горизонтальные оси; дей­ствующей вдоль всей ортогональной системы координат Х р, Y p , Z p - для локальной вибрации, где ось Х р совпадает с осью мест охвата (руко­ятки, рулевого колеса и др.), а ось Z p лежит в плоскости, образованной осью Х„ и направлением подачи или приложения силы.Общая вибрация по источнику ее возникновения подразделяется на транспортную, возникающую в результате движения по местности; транспортно-техническую, которая появляется при работе машин, выполняющих технологическую операцию в стационарном положении или при перемещении по специально подготовленной части производст­венного помещения, промышленной площадки; технологическую, кото­рая возникает при работе стационарных машин или. передается на рабо­чие места, не Имеющие источников вибрации.

43.прохождение звуковой волны преграды

Звуковые волны при встрече с преградой стично отражаются и частично преломля-тся. Часть преломленной энергии поглоща­ется в материале преграды. Оставшаяся часть звуковой энергии проникает за преграду (рис. 11.2). Количество отражений и преломле­ний энергии зависит от частоты колебаний, угла падения фронта волны на преграду и фи­зических свойств ограждающих конструкций.

Способность материалов и конструкций по­глощать звуковую энергию характеризуется коэффициентом звукопоглощения а, который равен отношению звуковой энергии, поглощен­ной материалом Е потл , к падающей звуковой энергии 4,а Д:

а=£= »<1. Отражение звука от преграды характеризу­ется коэффициентом отражения Р, равным от­ношению отраженной от поверхности энергии £ отр к падающей звуковой энергии:

Рис. 11.2. схемы отражения, поглощения и прохождения звуковой энергии при встрече с преградой (Е ппд - падающая звуковая энергия: Е отр – отраженная преградой звуковая энергия; Е погл. - прошедшая за преграду звуковая энергия)

Звукоизоляция.

Звукоизоляция – применение звукоизолирующих ограждений на путях распространения воздушного шума. Эффект снижения шума достигается путем отражения звуковых волн от звукоизолирующих ограждений. Звукопоглощение достигается облицовкой ограждающих поверхностей помещения специальными пористыми материалами, уменьшающие отражение звуковых волн от поверхностей, встречаемых ими на путях распространения. Звуковая энергия, попадая в поры звукопоглотительных материалов, переходит в тепловую в результате многократного отражения от стенок пор. Наиболее интенсивно преобразуют энергию звуковых колебаний в тепловую пористые и рыхлые материалы, которые и применяют для
:получения высокогозвукопоглощающего эффекта.

45 Звукопоглощение.

Для звукопоглощения используют способность строительных материалов и конструкций рассеивать энергию звуковых колебаний. При падении звуковых волн на звукопоглощающую поверх­ность, выполненную из пористого материала (например, пенопласта) значительная часть акустической энергии расходуется на приведение в колебательное движение воздуха в порах, что вызывает его разогрев. При этом кинетическая энергия звуковых колебаний преобразуется в.тепловую, которая рассеивается в окружающем пространстве.

Наиболее интенсивно преобразуют энергию звуковых колебаний в тепловую пористые и рыхлые материалы, которые и применяют для получения высокого звукопоглощающего эффекта.

Виброизоляция.

Виброизоляционная защита является одним из эффективных способов защиты рабочих мест, оборудования и строительных конструкций of вибраций, вызываемых работой машин и механизмов. Виброизоляция -это способ вибрационной защиты, заключающийся в уменьшении пере­дачи вибрации от источника возбуждения защищаемому объекту при помощи устройств (виброизоляторов), помещаемых между ними

Для создания вибробезопасных машин при их конструировании при­меняют методы, снижающие параметры вибраций воздействием на источник возбуждения, а для машин со встроенным рабочим местом до­полнительно методы вибрации, установленные ГОСТ 12.4.046-78 При проектировании технологических процессов и производственных зданий и сооружений должны быть выбраны машины с наименьшими значениями параметров вибрационных характеристик, зафикси­рованы рабочие места (зоны), на которых работающие могут подвергаться воздействию вибраций; разработана схема размещения машин с учетом создания минимальных уровней вибрации на рабочих местах; произведены расчеты (оценки) ожидаемых уровней вибрации на рабочих местах; выбраны строительные решения оснований и перекрытий для установки машин, обеспечивающие гигиенические нормы вибрации на рабочих местах; выбраны и рассчитаны необходимые средства вибро- защиты машин или рабочего места оператора, позволяющие вместе со строительными решениями обеспечить гигиенические нормьь вибраций на рабочих местах.

Пружинные виброизоляторы эффективны на низких частотах, резиновые – на высоких (более 30 Гц).

Вибрацией называют механические ритмичные колебания упругих тел. Чаще всего под вибрацией понимают нежелательные колебания. Аритмичные колебания называют толчками.

Распространяется вибрация вследствие передачи энергии колебаний от колеблющихся частиц к соседним частицам. Эта энергия в любой момент пропорциональна квадрату скорости колебательного движения, поэтому по величине последней можно судить об интенсивности вибрации, т. е. о потоке вибрационной энергии. Поскольку скорости колебательного движения изменяются во времени от нуля до максимума, для их оценки используют не мгновенные максимальные значения, а среднеквадратичную величину за период колебания или измерения.

В отличие от звука вибрация воспринимается разными органами и частицами тела. Так, при низкочастотных (до 15 Гц) колебаниях поступательная вибрация воспринимается отолитовым, а вращательная - вестибулярным аппаратом внутреннего уха. При контакте с твердым вибрирующим телом вибрация воспринимается нервными окончаниями кожи.

Сила восприятия механических колебаний зависит от биомеханической реакции тела человека, представляющего собой в определенной мере механическую колебательную систему, обладающую собственным резонансом и резонансом отдельных органов, что и определяет строгую частотную зависимость многих биологических эффектов вибрации. Так, у человека в положении сидя резонанс тела, который обусловливается влиянием вибрации и проявляется неприятными субъективными ощущениями, наступает на частотах 4-6 Гц, у человека в положении стоя - на частотах 5-12 Гц.

Человек ощущает вибрацию частотой от долей герца до 800 Гц, вибрация большой частоты воспринимается подобно ультразвуковым колебаниям, вызывая ощущение тепла.

Человек ощущает колебательные скорости, отличающиеся в 10 000 раз. Поэтому по аналогии с шумом интенсивность вибрации часто оценивают как уровень колебательной скорости (виброскорости), определяя его в децибелах.

За пороговую колебательную скорость принята величина 5 х10"8 м/с, что отвечает пороговому звуковому давлению 2 х 1 0 ~ 5 Н/м2.

Для характеристики вибрации можно использовать и другие показатели, например виброускорение, вибросмещение. Это равнозначные единицы, которые используют для описания вибрации как физического процесса.

В большинстве случаев вибрация, создаваемая различными источниками, имеет сложный спектр частот. Отличается она неодинаковым распределением интенсивности по частотам и разным характером изменения общей вибрационной энергии во времени.

Так же, как и шум, вибрация разных частот и интенсивностей неодинаково воздействует на организм человека. По характеру воздействия выделяют общую и локальную вибрацию. Общая вибрация - это колебания больших поверхностей, передающиеся всему организму. Локальная вибрация наблюдается при колебаниях небольших тел (ручные инструменты и т. д.) Она обычно передается ограниченному участку тела человека и имеет значение для его производственной деятельности. В коммунальной гигиене мы имеем дело главным образом с общей вибрацией, возникающей во время движения автотранспорта, трамваев, троллейбусов, а также с колебанием пола, почвы и т. д.

По направлению воздействия на человека различают вертикальную и горизонтальную, переднезаднюю и боковую вибрацию, которую обозначают буквами Z, X, Y.

По ГОСТ 24346 – 80 под вибрацией понимается движение точки или механической системы, при котором происходит поочередное возрастание и убывание во времени значений любой величины, её характеризующей.

По механизму генерации различают вибрации с силовым, кинематическим и параметрическим возбуждением.

Силовое возбуждение вибрации – это возбуждение вибрации системы вынуждающими силами и моментами. Источниками их являются: возвратно-поступательные движущиеся системы (кривошипно-шатунные механизмы, ручные вибраторы и перфораторы, вибротрамбовки, виброплиты, вибробункеры и т.п.); неуравновешанные вращающиеся массы (ротора насосов и ГТД, ручные электрические и пневматические шлифовальные машины, режущий инструмент станков, вентиляторы и т.п.); ударные системы (ковочные и штамповочные молоты, подшипниковые узлы, зубчатые передачи и т.п.).

Кинематическое возбуждение вибрации – возбуждение вибрации системы сообщением каким-либо ее точкам заданных движений, не зависящих от состояния системы. Причинами его являются воздействие профиля дороги на автомобили и строительно-дорожные машины, электрокары и ручные тележки в помещениях, колебания пола помещений и т.п.

Параметрическое возбуждение вибрации – возбуждение колебаний и вибрации системы не зависящим от состояния системы изменением во времени одного или нескольких ее параметров (массы, момента инерции, коэффициентов жесткости и сопротивления). Источниками являются двигатели внутреннего сгорания при изменении давления газов в цилиндрах, пневматические двигатели и т.п.

По характеру изменения во времени различают колебания детерминированные (периодические или почти периодические), случайные (стационарные или нестационарные) и импульсные или затухающие, которые могут быть простыми и сложными.

Сложные колебательные процессы могут быть представлены в виде простых гармонических синусоидальных колебаний с помощью ряда Фурье.

Колебания подразделяются на свободные и вынужденные. Свободные колебания – вибрации системы, происходящие без переменного внешнего воздействия и поступления энергии извне. Вынужденные колебания – вибрации системы, вызванные и поддерживаемые силовым или кинематическим возбуждением.

Основными понятиями теории колебаний для вибрации являются:

1) вибрационные параметры: виброперемещение, виброскорость и виброускорение;

2) механический импеданс;

3) собственная частота.

Основными величинами, характеризующими вибрацию, происходящую по синусоидальному закону, являются:



· амплитуда виброперемещения S а – величина наибольшего отклонения колеблющейся точки от положения равновесия;

· амплитуда виброскорости V а – максимальное значение скорости колеблющейся точки;

· амплитуда виброускорения а а – максимальное значение ускорения колеблющейся точки;

· период колебаний Т – наименьший интервал времени, через который при периодических колебаниях повторяется каждое значение колеблющейся величины, характеризующей вибрацию;

· частота колебаний f – величина, обратная периоду колебаний.

Виброскорость и виброускорение связаны с виброперемещением и частотой ко­лебаний соотношениями:

V = 2 p × f × S и a = (2 p × f) 2 × S

Учитывая, что абсолютные значения величин, характеризующих вибрацию, изменяются в очень широких пределах, в практике виброакустических исследований и инженерных расчетах используют логарифмические уровни колебаний. Под ним понимается сравнительная характеристика колебаний двух одноименных физических величин, пропорциональная десятичному логарифму отношения оцениваемого и исходного значений величины

L = 20 × lq (b × b о –1),

где b – оцениваемое значение величины (скорость, ускорение и т.п.);

b о – исходное значение величины (скорости, ускорения и т.п.).

Так, например, уровни виброскорости и виброускорения определяются соответственно как

L V = 20 × lq (V × V o –1) и L A = 20 × lq (a × a o –1),

где V и а – оцениваемые значения соответственно виброскорости и виброуско­рения;

V o и а о – исходные (пороговые) значения виброскорости и виброускорения.

Согласно международному соглашению принято:

V о = 5 × 10 – 8 м/с и а о = 3 × 10 – 4 м/с 2 .

Уровни колебаний (вибрации) измеряются в децибелах (дБ).

В общем случае физическая величина, характеризующая вибрацию (например, виброскорость) является некоторой функцией времени: V = V(t ). Математическая теория показывает, что такой процесс можно представить в виде суммы бесконечно долго длящихся гармонических (синусоидальных) колебаний с различными амплитудами и периодами. В случае периодических колебаний частоты этих составляющих кратны основной частоте колебаний (процесса):



f n = n × f 1 ,

где n = 1,2,3,..;

f 1 – основная частота колебаний.

Основной характеристикой в производственной безопасности или охране труда является спектр вибрации, под которым понимается совокупность соответствующих гармоническим составляющим значений величины, характеризующей колебания (вибрации), в которой указанные значения располагаются в порядке возрастания частот гармонических составляющих. Периодическим и почти периодическим колебаниям соответствует дискретный спектр, непериодическим – непрерывный спектр. Если колебания представляют собой наложение периодических и случайных колебаний, то спектр имеет смешанный характер.

Интенсивность вибрационных воздействий на человека, приборы и другие объекты зависит от частоты. Поэтому весь диапазон частот колебаний принято разбивать на отрезки (полосы частот) и определять уровни вибрации для каждой полосы в отдельности. В качестве стандартных частотных полос при оценке вибрационной безопасности принимают октавные полосы, у которых отношение верхних граничных частот к нижним частотам равно 2. Каждую октавную полосу принято обозначать среднегеометрическим значением ее граничных частот, определяемым по формулам

f c = (f max × f m in) 0,5 = 2 0,5 f min @ 1,41 f min ,

где f min – нижняя, а f max – верхняя граничная частота, Гц, причем f max = 2 f min .

При необходимости октавные полосы делят на третьоктавные, для которых f max = 2 1/3 f min @1,26 f min . Например, первая октавная полоса имеет граничные частоты 0,7 и 1,4 Гц, а ее среднегеометрическая частота f c = 1 Гц; следующая, соответственно 1,4….2,8 Гц и 2 Гц и т. д.

Механический импеданс (Z) определяется как отношение вынуждающей силы (F ), приложенной к системе, к результирующей колебательной скорости υ в точке приложения силы

Собственная частота - это частота свободных колебаний системы, т.е. колебаний без переменного внешнего воздействия и поступления энергии.

Рис. 11.1. Собственная часто­та колебаний

Собственная частота колебаний системы (f 0 ), представленной на рис. 11.1, определяется по формуле:

где К - жесткость пружины; М - масса груза.

При равенстве собственной частоты колебаний системы частоте вынужденных колебаний возникает явление резонанса, приводящее к резкому увеличению амплитуды колебаний.

Классификация вибраций

В соответствии с СН 2.2.4/2.1.8.566-96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий» вибрация, воздействующая на человека, классифицируется следующим образом.

По способу передачи :

Общая вибрация, передающаяся через опорные поверхности на те­ло сидящего или стоящего человека;

Локальная вибрация, передающаяся через руки человека, на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов.

Общая вибрация в соответствии с ГОСТ 12.1.012 – 90 и СН 2.2.4/2.1.8.566 – 96 по источнику подразделяется на три категории:

1 – транспортная вибрация, воздействующая на операторов самоходных и при­цепных машин и транспортных средств при их движении по местности, агрофонам и дорогам, в т.ч. при их строительстве;

2 – транспортно-технологическая вибрация, воздействующая на операторов машин с ограниченной подвижностью, перемещающихся только по специально подготовленным поверхностям производственных помещений, промышленных площадок и горных выработок;

3 «а» – технологическая вибрация, воздействующая на операторов стационарных машин и оборудования или передающаяся на рабочее место, не имеющее источников вибрации;

3 «б» - технологическая вибрация, передающаяся на рабочие места, где нет ге­нерирующих вибрацию машин;

3 «в» – вибрация на рабочих местах работников умственного труда и персонала, не занимающегося физическим трудом.

Характерные случаи передачи вибрации телу человека с указанием опорных поверхностей приведены на рис. 11.2

Рис. 11.2. Варианты передачи вибрации телу человека

По источнику возникновения :

· общая в жилых помещениях и общественных зданиях:

От внешних источников (городского рельсового транспорта и автотранспорта; промышленных предприятий и передвижных промышленных установок);

От внутренних источников инженерно-технологического оборудования зданий и бытовых приборов (лифты, вентиляционные системы, холодильники и т.д.);

· локальная вибрация на производстве:

Локальная вибрация, передающаяся человеку от ручного ме­ханизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием;

Локальная, передающаяся человеку от ручного немеханизированного инструмента (без двигателей).

Вибрация в зависимости от времени действия подразделяется на:

Постоянную, при которой величина контролируемого параметра за время наблюдения изменяется не более, чем в два раза (на 6 дБ);

Непостоянную, при которой величина контролируемого параметра изменяется более чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 мин при измерении с постоянной времени 1 с., в том числе колеблющуюся, прерывистую и импульсную.

По характеру спектра :

· Узкополосная, у которой контролируемые параметры в одной третьоктавной полосе частот более чем на 15 дБ превышают значения в соседних третьоктавных полосах (рис. 11.3);

· Широкополосная - с непрерывным спектром более одной октавы (рис.11.4).

Рис. 11.3. Узкополосная вибрация

Рис. 11.4. Широкополосная вибрация

По частотному составу :

· Низкочастотная – с преобладанием максимальных уровней в октавных полосах частот 1-4 Гц для общих вибраций и 8-16 Гц - для локальных вибраций.

· Среднечастотная – 8-16 Гц для общих вибраций и 31,5-63 Гц - для локальных вибраций.

· Высокочастотная – 31,5-63 Гц для общих вибраций и 125-1000 Гц - для локальных вибраций.

Нормирование вибрации

Нормирование производственной вибрации осуществляется на основании СН 2.2.4/2.1.8.566-96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий».

Гигиеническая оценка постоянной и непостоянной вибрации в соответствии с указанным нормативным документом может производиться тремя методами:

· частотным (спектральным) анализом нормируемого параметра;

· интегральной оценкой по частоте нормируемого параметра;

· интегральной оценкой с учетом времени вибрационного воздействия по эквивалентному (по энергии) уровню нормируемого параметра.

Локальная вибрация нормируется в октавных полосах со среднегеометрическими частотами: 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц; общая вибрация - в октавных или 1/3 октавных полосах со среднегеометрическими частотами 0,8; 1; 1,25; 1,6; 2,0; 2,5; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0; 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 50,0; 63,0; 80,0 Гц.

При частотном (спектральном) анализе нормируемыми параметрами вибрации являются измеряемые в октавных или 1/3 октавных полосах частот средние квадратические значения виброскорости и виброускорения или их логарифмические уровни (L υ , L a).

При интегральной оценке по частоте нормируемым параметром является корректированное значение виброскорости или виброускорения (U) или их логарифмические уровни (L u), измеряемые с помощью корректирующих фильтров или вычисляемые по формулам:

,

,

где Ui, Lu i – средние квадратические значения виброскорости или виброускорения или их логарифмические уровни в i- й частотной полосе;

п – число октавных полос в нормируемом частотном диапазоне;

К i , L ki – весовые коэффициенты для i -й частотной полосы соответственно для абсолютных значений или их логарифмических уровней.

Значения весовых коэффициентов приведены для локальной и общей вибраций с учетом направления действия (Z o , X o , Y o )в СН 2.2.4/2.1.8.566-96.

При интегральной оценке вибрации с учетом времени ее воздействия по эквивалентному (по энергии) уровню нормируемым параметром является эквивалентное корректированное значение виброскорости или виброускорения (U экв ) или их логарифмический уровень (L экв ),измеренное или рассчитанное по нижеприводимым формулам:

;

,

где Ui – корректированные по частоте значения контролируемых параметров виброскорости (υ , L υ ), м/с, или виброускорения (a, L a), м/с 2 , действующих в течение времени t i ;

t i – время действия вибрации в i-ом интервале, ч;

п – общее число интервалов действия вибрации;

Т – общее время действия вибрации, ч., .

В СН 2.2.4/2.1.8.566-96 установлены предельно допустимые величины нормируемых параметров локальной и общей вибрации 1, 2 и 3 (а, б, в)категорий при длительности вибрационного воздействия 480 мин (8 ч).

В качестве примера в табл. 11.1 приведены предельно допустимые величины параметров локальной вибрации.

Таблица 11.1.

Среднегеометрические частоты октавных полос, Гц Предельно допустимые значения по осям Xл, Yл, Zл
виброускорения виброскорости
м/с 2 дБ м/с ·10 -2 дБ
1,4 2,8
1,4 1,4
31,5 2,8 1,4
5,6 1,4
11,0 1,4
22,0 1,4
45,0 1,4
89,0 1,4
Корректированные и эквивалентные корректированные значения и их уровни 2,0 2,0
© 2024 Свой бизнес